## Quasi-experiments in epidemiological research:

## Causal effects of work-related risk factors and health indicators

Professor of public health and epidemiology Sari Stenholm

10.5.2021 Tilastotieteen keskus



# What is known based on the "traditional" observational studies?



- Work-related stressors are shown to associate with cardiovascular disease, their risk factors, sickness absence as well as e.g. sleep problems
- Bi-directional associations of work-related stressors and health indicators, e.g. sleep and job strain
- Temporal order between work-stressors and health outcomes need further clarification



## Limitation in terms of causal inference in previous studies

- Very often association between <u>prevalent</u> work stressor and health outcome is examined
  - Healthy worker bias people working in certain types of jobs are selected group of people and often also healthier than those who switch to other job
  - E.g. shift work, stressful job
- Conducting trial to examine causality between work stressors and health outcomes is difficult
  - Unethical to disturb people's sleep or incraese work stressors on purpose



## Quasi experiments in epidemiological research: Pseudo trial / emulated target trial

- Ability to account timing of exposure and outcome
  - Miquel Hernan: "Low hanging fruit for causal inference"
  - Hernan MA et al. 2008 Epidemiology / Hernan MA et al. 2016 Am J Epidemiol
- Compared to RCTs, randomization is not possible
  - Need to account the confounding factors (adjustments or matching)



## Kuntasektorin henkilöstön seurantatutkimus (Finnish Public Sector study)

Työterveyslaitos

KUNTASEKTORIN TUTKINUS





©TYÖTERVEYSLAITOS

### Change in Job Strain as a Predictor of Change in Insomnia Symptoms: Analyzing Observational Data as a Non-randomized Pseudo-Trial

Jaana I. Halonen, PhD<sup>1</sup>; Tea Lallukka, PhD<sup>1,2</sup>; Jaana Pentti, BSc<sup>1</sup>; Sari Stenholm, PhD<sup>3</sup>; Naja H. Rod, PhD<sup>4</sup>; Marianna Virtanen, PhD<sup>1</sup>; Paula Salo, PhD<sup>1,5</sup>; Mika Kivimäki, PhD<sup>1,6,7</sup>; Jussi Vahtera, MD<sup>3,8</sup>

<sup>1</sup>Finnish Institute of Occupational Health, Work disability Prevention, Helsinki, Finland; <sup>2</sup>Department of Public Health, University of Helsinki, Helsinki, Finland; <sup>3</sup>Department of Public Health, University of Turku, Turku, Finland; <sup>4</sup>Section of Social Medicine, Department of Public Health, and Copenhagen Stress Research Center, University of Copenhagen, Copenhagen, Denmark; <sup>5</sup>Department of Psychology, University of Turku, Turku, Finland; <sup>6</sup>Department of Epidemiology and Public Health, University College London, London, UK; <sup>7</sup>Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland; <sup>8</sup>Turku University Hospital, Turku, Finland



## Study design and inclusion criteria

Onset analysis:

n participants=7354



**Exposure:** Self-reported job strain (combination of high demands and low job control)

Outcome: Sleep complaints more than once a week

- Participation in at least 3 successive waves
- No job strain baseline  $T_X$  and onset / no onset of job strain at time  $T_{X+1}$ .
- No insomnia symptoms at time-points  $T_X$  and  $T_{X+1}$ , but onset / no onset at  $T_{X+2}$ . Halonen et al. 2017 Sleep



## **Statistical modelling**

### General estimating equations

- Taking into account of within-person correlation in two nested pseudo trials
- Results presented as ORs using those with "no onset job strain" and "no disappearance of job strain" as the reference groups

### Model adjustment

 Potential baseline confounders: age, sex, marital status, education, physical inactivity, smoking, heavy alcohol consumption, BMI, and comorbidity



Halonen et al. 2017 Sleep

## Onset / disappearance of job strain and odds ratios for onset of insomnia symptoms





Halonen et al. 2017 Sleep

## Main findings

- Exposure to job strain affects sleep quality.
- Workplace modifications aiming to reduce job strain might have the potential to reduce insomnia symptoms.
- Further intervention studies are needed to confirm the findings.









Non-communicable Disease Risk Factors

#### Onset of impaired sleep as a predictor of change in health-related behaviours; analysing observational data as a series of non-randomized pseudo-trials

Alice Jessie Clark,<sup>1,2</sup>\* Paula Salo,<sup>3,4</sup> Theis Lange,<sup>5</sup> Poul Jennum,<sup>6,7</sup> Marianna Virtanen,<sup>8</sup> Jaana Pentti,<sup>3</sup> Mika Kivimäki,<sup>8,9</sup> Jussi Vahtera<sup>3,10†</sup> and Naja Hulvej Rod<sup>1,2†</sup>

<sup>1</sup> Section of Social Medicine, Department of Public Health, and <sup>2</sup>Copenhagen Stress Research Center, University of Copenhagen, Copenhagen, Denmark, <sup>3</sup>Finnish Institute of Occupational Health, Turku, Finland, <sup>4</sup>Department of Psychology, University of Turku, Turku, Finland, <sup>5</sup>Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark, <sup>6</sup>Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Glostrup University Hospital, Copenhagen, Denmark, <sup>7</sup>Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark, <sup>8</sup>Finnish Institute of Occupational Health, Helsinki, Finland, <sup>9</sup>Department of Epidemiology and Public Health, University College London, London, UK and <sup>10</sup>Department of Public Health, University of Turku and Turku University Hospital, Turku, Finland

#### SLEEP AND CARDIOVASCULAR DISEASE

SLEEP 2016;39(9):1709–1718.

#### Onset of Impaired Sleep and Cardiovascular Disease Risk Factors: A Longitudinal Study

Alice Jessie Clark, PhD<sup>1,2</sup>; Paula Salo, PhD<sup>3,4</sup>; Theis Lange, PhD<sup>5</sup>; Poul Jennum, PhD<sup>6,7</sup>; Marianna Virtanen, PhD<sup>3</sup>; Jaana Pentti, BSc<sup>3</sup>; Mika Kivimäki, PhD<sup>8,9</sup>; Naja Hulvej Rod, DMSc<sup>1,2,\*</sup>; Jussi Vahtera, PhD<sup>3,10,\*</sup>

<sup>1</sup>Section of Social Medicine, Department of Public Health, University of Copenhagen, Copenhagen, Denmark; <sup>2</sup>The Copenhagen Stress Research Center, University of Copenhagen, Copenhagen, Copenhagen, Denmark; <sup>3</sup>Finnish Institute of Occupational Health, Helsinki and Turku, Finland; <sup>4</sup>Department of Psychology, University of Turku, Turku, Finland; <sup>5</sup>Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark; <sup>6</sup>The Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Glostrup University Hospital, Copenhagen, Denmark; <sup>7</sup>Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark; <sup>6</sup>Department of Public Health, University of Helsinki, Helsinki, Finland; <sup>9</sup>Department of Epidemiology and Public Health, University College London, London, UK; <sup>10</sup>Department of Public Health, University of Turku and Turku University Hospital, Turku, Finland; \*co-last authors



### **Exposure: Onset of impaired sleep**

- Short sleep duration: participants reported 6.5 hours of sleep
- Long sleep duration: participants reported 9 hours of sleep
- Disturbed sleep: participants reported sleep complaints more than once a week

### **Outcome 1: Changes in health-related behaviours**

- Increase in high-risk alcohol use: >16 units/week for women and >24 for men
- Quitting smoking
- Becoming physically inactive: MET < 14 h/week
- Becoming overweight or obese:  $BMI \ge 25 \text{ kg/m}^2 / \ge 30 \text{ kg/m}^2$

### **Outcome 2: Onset of CVD risk factors**

• Initiation of medication for CVD risk factors was derived from electronic medical records

Clark et al. 2015 Int J Epidemiology & Clark et al. 2016 Sleep





**URUN** 

## Study design and inclusion criteria



- Participation in at least 3 successive waves
- Normal sleep at baseline  $T_X$  and onset / no onset of impaired sleep at time  $T_{X+1}$ .
- No health behavioral risk factor at time-points  $T_X$  and  $T_{X+1}$ , but onset of risk factor at  $T_{X+2}$ .

Clark et al. 2015 Int J Epidemiology



TURUN

## Study design and inclusion criteria



- Participation in at least 2 successive waves and register follow-up
- Normal sleep at baseline  $T_X$  and onset / no onset of impaired sleep at time  $T_{X+1}$ .
- No pre-existing health outcome at time-points  $T_X$  and  $T_{X+1}$ , but onset at  $T_{X+2}$ . Clark et al. 2016 Sleep

## Onset of impaired sleep and ORs for adverse changes in health-related behaviours

|                          | Initiate<br>high-risk alcohol<br>consumption | Quit<br>smoking  | Become<br>physically<br>inactive | Become<br>overweight /<br>obese |
|--------------------------|----------------------------------------------|------------------|----------------------------------|---------------------------------|
|                          | OR (95% CI)                                  | OR (95% CI)      | OR (95% CI)                      | OR (95% CI)                     |
| Onset of short sleep     | 1.17 (1.00–1.37)                             | 0.78 (0.64–0.97) | 1.00 (0.90–1.11)                 | 1.09 (0.99–1.21)                |
| Onset of long sleep      | 0.73 (0.50–1.07)                             | 1.10 (0.70–1.72) | 1.18 (0.97–1.43)                 | 0.96 (0.79–1.16)                |
| Onset of disturbed sleep | 1.23 (1.05–1.45)                             | 0.80 (0.63–1.00) | 1.17 (1.06–1.30)                 | 1.12 (1.01–1.23)                |

Ref (OR=1) is normal sleep duration or no disturbed sleep

Adjusted for potential confounders (age, sex, cohabitation, occupational status, retirement, cardio-metabolic disorders, respiratory disease, cancer, psychological, distress, depression, and anxiety) and mutually for other health behaviors

Clark et al. 2015 Int J Epidemiology



## Onset of impaired sleep and HRs for hypertension, diabetes, and dyslipidemia

|                          | Hypertension     | Diabetes         | Dyslipidaemia    |
|--------------------------|------------------|------------------|------------------|
|                          | HR (95% CI)      | HR (95% CI)      | HR (95% CI)      |
| Onset of short sleep     | 1.13 (0.96–1.33) | 1.15 (0.97–1.37) | 1.08 (0.98–1.19) |
| Onset of long sleep      | 0.87 (0.60–1.27) | 1.34 (0.97–1.85) | 1.10 (0.91–1.32) |
| Onset of disturbed sleep | 1.35 (1.16–1.59) | 1.29 (1.09–1.53) | 1.27 (1.16–1.39) |



Ref (HR=1) is normal sleep duration or no disturbed sleep

Adjusted for potential confounders

Clark et al. 2016 Sleep



## Onset of impaired sleep has an adverse effect of lifestyle changes and CVD risk factors



## Stengths and barriers of pseudo trials

### Strengths

- Mimics interventions
- Clear temporal ordering of causes and effect
- Enables studying exposures, which are difficult to modify in RCTs

### Barriers

- Requires high resolution longitudinal data, with short measurement intervals
- Inclusion and exclusion criteria require large datasets
- Explaining the design may be challenging





Contact: <u>sari.stenholm@utu.fi</u>



