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Markov random fields (MRF) are frequently used as prior distributions
in spatial statistics, see for instance Besag (1986) and Hurn et al. (2003). In
this presentation we consider a binary MRF, = {z;;;(¢,j) € S}, defined
on a rectangular lattice S, and assume the field to be stationary except for
boundary effects. We assume the set of maximal cliques to consist of all k x {
blocks of nodes, and the main topic of the presentation is how to build a
prior distribution for the MRF model parameters in this situation. Clearly
the number of free parameters becomes large even for quite small values of k
and [, and it is therefore essential to define a prior which limit the effective
number of parameters.

To define a prior for the model parameters we first need to formulate an
identifiable parametric model. An easy alternative is to express the model in
terms of interaction parameters,
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where ¢(f3) is a normalising constant, £ is the set of all cliques, and 8 is the
interaction parameter for the clique A. With one restriction on the interaction
parameters, for example 8% = 0, this defines an identifiable model. However,
the interpretation of the interaction parameters, 3%, is not very clear and
in particular the natural scale of 8* depend on the number of elements in
the clique A. This complicates the definition of a prior for the f*’s. We
instead define a parametric form where the parameters have interpretation
as potentials of clique configurations,
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where ¢(¢) is a normalising constant, £, is the set of all maximal cliques,
13 is the colouring of the nodes in the maximal clique A € £,,, which assigns
the value 1 to all nodes in A € A and 0 to the nodes in A\ A\. The ¢}
parameters have a much easier interpretation than the 8* parameters and
in particular it is reasonable to assume all the (;5;\\ parameters to be on the
same scale. However, p(z|¢) is grossly overparameterised and the model is
not identifiable. We identify a sufficient number of restrictions on the ¢}
parameters which makes the parametric model identifiable.



When defining a prior for the (restricted) ¢} parameters we want to obtain
a flexible prior model so that the model may adapt to the structure of any
observed image. Therefore we do not put any absolute restrictions on the
parameters other than the ones made to make the model identifiable. Instead
we limit the effective number of parameters by assigning apriori discrete
probabilities for events where groups of parameter values are exactly equal.
The prior is thereby defined in two steps, first we define a prior for what
group of parameter values that are exactly equal, and given such a grouping
we put a prior on parameter values.

Assuming we have observed a binary image = we define a reversible jump
Markov chain Monte Carlo (RJIMCMC) algorithm (Green, 1995) to sample
from the associated posterior distribution. It should be noted that by a prior
defined as discussed above the RIMCMC algorithm effectively serves as a
model selection algorithm. When running the RIMCMC algorithm we have
to cope with the computationally intractable normalising constant of the
MRPF, ¢(¢). Our approach is to adopt a previously defined approximation for
binary MRFs (Tjelmeland and Austad, 2012).

We have explored our approach in a number of simulation examples. In
particular we have generated simulated data from an independence model
where the value in the variuos nodes are independent, and we have generated
simulated data from an Ising model. In both cases, using a 2 x 2 maximal
clique model, the posterior distribution gives a high probability to the group-
ing of the ¢} parameters that corresponds to the model that generated the
data. In a real data case, still assuming 2 x 2 maximal cliques, the posterior
most probable grouping of the parameters had three groups, one parameter
for the configuration where all nodes are zero, one parameter for the con-
figuration where all nodes are one, and one common parameter for all the
remaining clique configurations.
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