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A basic problem for exact Bayesian inference in non-linear Gaussian state
space models, is the presence of several variances, at least one of measurement
errors and at least one of state transitions. Unless the variance priors are
sufficiently informative, the joint likelihood of global parameters, θ, state
variables, x, and data y, π(y, x, θ), will be multi-modal with one infinite mode
for each variance that can turn zero. All these modes should in principle
be explored as part of an exhaustive Bayesian analysis, but this will not
necessarily happen with versions of Metropolis-Hastings algorithm.

With linear Gaussian models the problem is avoided by calculation of the
likelihood of data and global parameters, π(y, θ) =

∫
π(y, x, θ)dx, by means

of integration over state variables. Integration is analytic with the Kalman
filter and smoother, and semi-analytic with INLA. This likelihood with its
single finite mode can be explored if the dimension of θ is not too large.
The procedure is not straightforward for non-linear models where integration
need be conducted numerically, however. The accuracy of integration need
be sufficient to establish an approximate posterior likelihood that can be
applied for inference. Numerical integration in high-dimensional space is a
challenging task, in particular because convenient properties of symmetry
and pervasive conditional independence, fade when models turn non-linear.

As an alternative strategy for non-linear models I propose least-informative
priors which rule out infinite modes of the joint likelihood at zero variances.
The priors can be Wishart distributed with sufficient degrees of freedom. The
finite mode(s) can then be easily found. Approximate Bayesian inference can
be achieved with importance sampling from the Laplace-approximation at
the mode(s). Cases of zero variance can be approached with additional mod-
els with zero variance imposed. Model selection (with Bayes factors or DIC)
on the various models will then reveal whether a zero variance is a sensible
assumption or not. A decisive test in favor of the non-zero variance model
rules out a positive probability of zero variance, since the informative prior
has not benefitted the performance of the associated model. Weak tests on
the other hand suggest that a zero variance should be preferred.

The procedure will be illustrated with an estimated model of farm behav-
ior according to stochastic dynamic optimization. Observed behavior (less
measurement errors), xt, is assumed to maximize a program conditional on
stocks (also less errors) Xt:

max
x

{U(x,Xt; θ) + βEπ(Xt+1|xt,Xt;θ)U
∗(Xt+1; θ)} = U∗(Xt; θ)



where U is temporal utility, U∗ is expected present utility of all future events
and optimized behaviors, β is a discount factor and π is a contingent distri-
bution. Optimization induces a first order condition and an Euler equation
that identifies the optimal responses, x∗(Xt), and the functional relation-
ships between the three functions. The global parameters comprise now the
parameters of the functions, θ, the discount factor, the variances of state
variables, (xt, Xt), the variances of measurement errors and at last the errors
of optimization.
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