ESTIMATION AND VISUALIZATION OF QUANTILE
SURFACES IN FLEXIBLE SPACE-TIME SETTINGS

Dana Sylvan! and Constantin Tarcolea®

I Hunter College of The City University of New York, USA
2 University “Politehnica” Bucharest, Romania

The study of quantiles of probability distribution functions is fundamen-
tal in mathematical statistics, with widespread applicability. Many real-life
processes have been observed to have complex structures generated by their
temporal and spatial dependencies, often times showing significant departures
from Gaussianity and/or and stationary behavior and thus yielding serious
metholodgical challenges. The practical motivation of our study stems from
environmentally-related health concerns. Generally, people are adversely af-
fected only by very high values of temperature, precipitation, pollution, thus
the need for modeling effects of high order quantiles rather than modeling
mean effects. Maximum readings would give a more relevant statistic for
monitoring than average values, however, high order quantiles are preferred
to maximum values for increased statistical stability. Environmental stan-
dards in Europe and North America are set based on various distributional
characteristics, therefore information on quantiles is valuable to policy mak-
ers. More examples of relevant applications may be found in biomedical
research, climatology, ecology, education, finance, sports. Here we present
statistical methodology for modeling and prediction of quantile fields in flex-
ible classes of space-time processes.

Specifically, we compare and contrast two situations: (1) observations
consist of long time series collected at smaller number of random spatial
locations, and (2) data are observed on space-time lattices. The problem of
interest is to predict the quantile field at any time and location in the domain
where there are no observations. Denote by X (¢, s) a random field observed
at n time points {t1,...,t,} and m spatial locations {s1,...,s,} € D C R
For z € R, let F, s(x) = P[X(t,s)) < z] be the probability distribution
function of the process, yielding the space-time-varying conditional quantile
function g, (t,s) = inf {z : F; ;(x) > o} for fixed a € [0, 1].

The first situation is common for geostatistical applications, where typi-
cally m < n, so we may think of a collection of spatially correlated time series
observed at random locations in a fixed domain. In this case, guided by the
data collection mechanism, it is reasonable to assume space-time separability
and model the space-time quantile surface sequentially in two steps. First,
we fix the spatial location and estimate the time-varying quantile functions
based on the observed time series. To accommodate complex temporal de-
pendencies and allow flexibility across locations, we opt for a nonparametric,
data-driven approach, for example by using the smoothed moving window
quantile curve estimator introduced in Draghicescu et al. (2009). In the sec-
ond step we fix ¢ and employ spatial interpolation to predict the quantile



field of interest at any location so € D as ¢%(t,s0) = > ie; Aida(t, s;). Here
Ga(t, s) is an estimator of the time-varying quantile curve, and the interpo-
lation weights \;, 1 < ¢ < m are completely specified by the parameters
describing the second order spatial structure. Assuming that the spatial
quantile field is isotropic, we model its spatial covariance parametrically as
cov ((ja(t, )y o (t, s’)) = Cy (0, h), where h = ||s — §'|| is the Euclidean dis-
tance between s, s’ and the function C, is chosen from a flexible class of spa-
tial covariance models, such as the Matérn class. This procedure is known as
universal kriging (Stein 1999), and, accordingly, ¢% (¢, so) is a best linear unbi-
ased predictor. A similar sequential two-step approach was used in Cameletti
et al. (2013) for modeling space-time threshold exceedance probabilities.

In case (2) we assume that the data are collected on space-time lattices
and thus the observations are distributed in equally-spaced blocks. The se-
quential method described before can be used in this scenario as well. How-
ever, we may now take advantage of the large number of spatial points where
the process is observed and relax the spatial assumptions. Thus, in the sec-
ond step, instead of kriging, we smooth over space through a bivariate kernel,
for instance by adapting methodology in Biau (2003). As an alternative, we
introduce a direct (one-step) procedure based on moving space-time blocks
of sample quantiles.

For the cases presented above we give theoretical considerations, discuss
implementation procedures, and illustrate the findings on applications to
environmental space-time data and on Monte Carlo simulations. We conclude
by indicating some open problems that will be addressed in future work.
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