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The study of cancer at the molecular level has increased our understand-
ing of these diseases in recent years. Yet, analysis of different cancer classes
as well as integration of data types remains a sizable challenge. Network
modelling has been used to construct mechanistic hypotheses and success-
fully derive predictions of potential drug targets or survival outcome [1,4].
Nevertheless, few attempts have been made to generate comprehensive and
interpretable network models of multiple cancers [3], or to incorporate sparse
estimates of the expression levels [7].

Here we propose to integrate and extend [3,7] into a joint framework to
investigate a multiclass sparse inverse covariance (precision) matrix and mean
vector estimation method. Our goal is to obtain estimates for transcription
networks (given by the inverse covariance matrix) as well as expression levels
(given by the mean vectors) for different cancer classes. To this end we
propose to maximize the corresponding penalized likelihood functions using
ADMM (Alternating Directions Method of Multipliers, [2]). More precisely,
suppose that we have data sets Xk ∼ N(µk,Σk), µk ∈ Rp, Σk ∈ Rp×p, for
k = 1, 2, . . . ,K (cancer) classes. Let {µk} and {Ωk} denote the set of mean
vectors and precision matrices for the K classes. The penalized log-likelihood
we aim to maximize is:
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which includes a lasso term to encourage sparsity, and a fused term [3] to
penalize differential estimates. To estimate {µk} we optimize the profile
log-likelihood function when an estimate of {Ωk} is known. Similarly, to esti-
mate {Ωk} we optimize the profile log-likelihood function when an estimated
of {µk} is known. In practice, given some initial values, we alternate between
these two estimation procedures for {µk} and {Ωk} until convergence. Each
profile log-likelihood is maximized using methods that build on [6]; (i)class
specific sample size corrections and (ii)a novel bootstrap procedure for esti-
mating robust sparse and fused structures.

We perform extensive simulation studies to investigate the performance
of our method. We construct mean vectors and the precision matrices with
components that are either common or differential across classes, and show
that our method can accurately find the true sparsity and fusing structure
(of both mean vectors and precision matrices).



Since our framework is that of Gaussian graphical models, with a minor
additional constraint on the precision matrices to be block diagonal, we can
recast the problem into an ensemble classifier, where each block takes on the
format of a linear [5] or a quadratic component of the corresponding discrim-
inant function. Following [5], the contribution of each model component to
the discriminatory power provides insight into the differences between cancer
classes.

Finally, we apply our method to expression data for glioblastoma, breast
and ovarian cancer from the Cancer Genome Atlas (TCGA). Results are in-
corporated into our analysis web tool Cancer Landscapes (available at
www.cancerlandscapes.org) which allows biologists and other scientists to
further examine the properties of the estimates and their linear and quadratic
components, i.e. model components that distinguish between cancer classes
based on differential expression levels only versus components differential in
network structure.
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