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In this work, we study approximate Bayesian smoothing for the following
continuous-time stochastic system with discrete-time noisy measurements

dx = f(x,t)dt + L(t)d5(t)
Yk = h(z(tk)) + vk,

where x is the state, f is the drift or dynamic function, L is the dispersion
matrix and §(¢) is a Brownian motion stochastic process. The measurements
yr are taken at discrete-time instants t;. The measurement noise {vy} is a
zero-mean Gaussian white noise stochastic process.

Given a set of measurements {yi,...,yx}, the solution to the Bayesian
smoothing problem is the conditional distribution p(x,t|yi,...,yx). The
exact computation of the smoothing distribution involves solving the Fokker-
Planck-Kolmogorov (FPK) partial differential equation, which is intractable
for most nonlinear models (Séarkkéa, 2006). In this work, we consider approx-
imate smoothing algorithms that result in a Gaussian approximation for the
smoothing distribution:

p(x,t|y1,...,yx) = N(z(t) | m(t), P(t)).

The smoothing problem now reduces to computing the mean and covari-
ance matrix of the Gaussian approximation. Two approaches found from
the literature are considered: classical Gaussian approximation (Sarkka and
Sarmavuori, 2013) and variational Gaussian approximation (Archambeau et
al., 2007).

The first approach is called classical approach in this work, since it is
based on the classical Gaussian approximation for the filtering distribution
(Jazwinski, 1970; Ito and Xiong, 2000). Sirkkid and Sarmavuori (2013) de-
rive two Gaussian smoothing algorithms, called type I and type II Gaussian
smoothers, using the Gaussian approximation for the filtering distribution.
For both methods, the Gaussian approximation is found by first solving the
forward differential equations for the mean and covariance of the filtering
distribution, and then using these results to solve the backward differential
equations for the smoothed mean and covariance.

The second approach, called variational Gaussian smoother, was derived
by Archambeau et al. (2007). It is based on minimizing the Kullback-Leibler



divergence between the approximating Gaussian process and the true smooth-
ing process. This results in a boundary value problem that can be solved
using an iterative fixed-point algorithm.

Implementation of the smoothers relies on a method to compute Gaussian
expectations over arbitrary functions. These methods are well known in the
literature and include the Taylor series based linearization methods, Cubature
rule and Unscented transform based sigma-point methods and Gauss-Hermite
quadrature based methods. For this work we have chosen to use the Gauss-
Hermite quadrature since it can be made exact for monomials up to arbitrary
fixed degree (Sdrkki and Sarmavuori, 2013).

The smoothing methods are compared in terms of computational proper-
ties and quality of the resulting approximation for the double-well stochastic
system described by

dr = 4x(1 — 2%) dt + o dg,
Y = x(ty) + vg.

The double-well system is highly nonlinear and its stationary distribution
has two modes at x = +1. With sufficiently large value for process noise
parameter o, there is frequent jumping between the two modes. For this one
dimensional example a relatively accurate reference smoothing solution can
be obtained by solving the exact Bayesian smoothing equations on a dense
grid using a finite difference approximation. The type I and II smoothers are
computationally less complex than the variational smoother, since each iter-
ation of the variational smoother requires approximately the same amount of
computations as the two passes needed in type I and IT smoothers. However,
the extra effort results in better approximation of the reference smoothing
solution, especially in estimating the jumps between the two modes.
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