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ABSTRACT Mortality surfaces are intensity measures of mortality at
population level as function of age and time, they represent an important
statistical tool to explain and forecast the dynamics of mortality. Since the
paper by Vaupel et al. (1979) different approaches have been proposed, see
for example Lee and Carter (1992). The main goal is to take into account
the joint effects of period, age and cohort and their possible interactions.

In this work we develop an approach based on Markov random fields to
estimate the mortality intensity and to decompose it into two useful inter-
pretable components. The use of Markov random fields in spatial statistics
originated in the framework of image analysis during the 80s and in the last
20 years has become very popular in many fields of application as in ecological
analysis, disease mapping and biogeography (see Besag et al., 1991).

In simple words, a random field is a joint probability model for a set of
n random variables positioned on the knots of a finite graph, with a given
dependence structure. When the dependence is Markovian the random field
is a Markov random field (MRF). Let T domain of the time variable t and X
the domain of the age variable x, in this framework the random quantities of
interest are represented by the mortality intensities µt,x related to the cells
(t, x) of a 2-dimensional Lexis diagram L = T × X (Keiding, 1991).

Our approach consists of two levels. The first one describes the hidden
status variables underlying the data. At this level we model the mortality
intensities µt,x through a random field with two separable components. At
the second level, the conditional likelihood model describes the observable
death counts Dt,x, considered as random variables independently Poisson
distributed with mean µt,xNt,x, where Nt,x is the size of the population at
risk concerning the cell (t, x).

In general, we expect that the mortality intensity is rather smooth across
the Lexis diagram. Thus, we assume that the quantities µt,x should not vary
much in time and age and present a smooth pattern. This aspect is modelled
through the use of a random field with Markovian dependence. On top of
a main smooth pattern, we should account also for additional mortality in
excess or in defect. This second feature, that could be the result of latent
factors, can be modelled by a second component of independent random
effects. Under these assumptions, for each cell (t, x) ∈ L, we define the
following probabilistic model for µt,x

logµt,x = ρt,x + ζt,x. (1)



In particular, we assume that the joint distribution of ρ = {ρt,x : (t, x) ∈
L} is a Gaussian random field with interaction parameter γ and Markovian
neighbourhood system ∆ (GMRF). More precisely, the joint density of ρ is
given, less than a normalizing constant, by π(ρ) ∝ exp{−γ

∑
(t,x)∼(t′,x′)(ρt,x−

ρt′,x′)2}. This is the classical pairwise smoothing Gaussian Markov random
field which aims similarity of ρt,x with other variables ρt′,x′ located in its
neighbourhood, denoted by the cells (t′, x′) ∼ (t, x). The random effects ζt,x
are assumed to be independent Gaussian distributed with mean and precision
equal respectively to 0 and σ−1.

In the model (1) ρt,x follows a Lexis smooth model while the second
component ζt,x is the additional random effect necessary to recompose the
full mortality intensity µt,x. More precisely, the GMRF models the Lexis
dynamic affecting the mortality, given by the smooth joint effect of period
and age, and also induces smoothness between neighbourly cohorts. The
second component, the independent random effects, accounts for the possible
effect of latent factors. Typical effects included in that component are the
well known cohort frailty effects.

We approach the inferential problem in a Bayesian setting: the hidden
model represents our prior guess on the quantities of interest µt,x, while the
likelihood includes the empirical evidence of the data. The parameters can
be estimated through the posterior model resulting by joining prior with
likelihood through the Bayes rule. The marginal profiles of the full posterior
distribution can be simulated by Markov chain Monte Carlo techniques to
compute estimates and credibility intervals.

Applications on real data have shown fitting and flexibility of the proposed
approach as well as the possibility to interpret the mortality in two separable
components: the smoothing by period-age-cohort and the heterogeneity by
frailty and latent factors.
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