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The aim of this talk is to derive numerical schemes based on probabilistic
representations of the Cauchy problem solution for a quasilinear parabolic
equation of the form

us + 〈a,∇〉u+
1

2
TrA∇2uA+ g(x, u,∇u) = 0, u(T, x) = u0(x), (1)

where a,A have the form a = a(x, u,∇u) and A = A(x, u,∇u), TrA∇2uA∗ =

Ak
i∇ijuA

k
j , 〈a,∇〉u =

∑d
k=1 ak

∂u
∂xk

. Actually the corresponding schemes can
be derived for different types of the Cauchy problem solutions, namely for
classical, generalized and viscosity solutions, depending on what kind of prob-
abilistic counterpart of (1) is chosen (see [1]-[3]).

Let (Ω,F , P ) be a given probability space and w(t) ∈ Rd be a standard
Wiener process defined on it. For a semilinear parabolic equation of the type
(1) when functions f = a,A, g are of the form f = f(x, u) one can consider
the following stochastic counterparts for (1)

dξ(t) = a(ξ(t), u(t, ξ(t)))dt+A(ξ(t), u(t, ξ(t)))dw(t), ξ(s) = x (2)

u(s, x) = E[u0(ξ(T )) +

∫ T

s

g(ξ(θ), u(θ, ξ(θ)))dθ] (3)

in terms of forward SDEs and

dξ(θ) = a(ξ(θ), y(θ))dθ +A(ξ(θ), y(θ))dw(θ), ξ(s) = x, (4)

dy(θ) = −g(ξ(θ), y(θ))dt+ z(θ)dw(θ), y(T ) = u0(ξ(T )). (5)

Here we assume y(θ) = u(θ, ξ(θ)), z(θ) = A∗∇u(θ, ξ(θ)). The extension
of (2),(3) to a quasilinear case is based on a construction of probabilistic
representations of ∇u and perhaps ∇2u and deriving of a system similar to
(2),(3) for a function M(s, x) = (u(s, x),∇u(s, x),∇2u(s, x)) ∈ R×Rd×Rd⊗
Rd. At the other case (4),(5) need only minor changes and have the form

dξ(θ) = a(ξ(θ), y(θ), z(θ))dθ +A(ξ(θ), y(θ), z(θ))dw(θ), ξ(s) = x, (6)

dy(θ) = −g(ξ(θ), y(θ), z(θ))dt+ z(θ)dw(θ), y(T ) = u0(ξ(T )). (7)

To obtain numerical algorithms to solve (1) one can consider a partition of
an interval [0,T], 0 = t0 ≤ . . . ≤ tn = T , where a unique solution of (1)



is proved to exist in a certain sense and consider the corresponding discrete
versions of either (2),(3) or (4),(5) or else (6),(7) (see [4],[5]).

As an example we consider the discrete version of (4),(5) (with g depend-
ing on z) written in the form

ξn0 = x, ξ̄k+1 = ξ̄k + a(ξ̄k, ȳ)h+A(ξ̄k, ȳ)ε
√
h,

ȳnn = u0(ξ̄nn), z̄nk = h−1Etk [ȳnk+1

√
hε]

ȳnk = Etk [ȳnk+1 − g(ξ̄nk , ȳ
n
k , z̄

n
k )h].

Here ε is chosen to be either a standard normal variable N(0, 1) or a binomial
variable valued in {1,−1} with P{ε = 1} = P{ε = −1} = 1/2.

The corresponding scheme with ε being an N(0, 1) r.v. was realized to
obtain a numerical solution for the Burgers equation with various initial data.
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