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ades various nonlinear autoregressive (AR) models have been proposedto model time series data. A general 
lass of nonlinear AR models is 
omprised of mixtures oflinear AR models studied in works by Wong and Li (2001), Glasbey (2001), Lanne and Saikkonen(2003), Carvalho and Tanner (2005), Dueker, Sola, and Spagnolo (2007), and Be
, Rahbek, andShephard (2008) to mention only a few.For a real-valued time series yt (t = 1, 2, . . .), a mixture AR model 
an be de�ned by assumingthat the 
onditional distribution of yt given its past history Ft−1 = {yt−j, j > 0} is a mixtureof distributions. In the Gaussian 
ase, this amounts to assuming that the 
onditional densityfun
tion is of the form

f(yt | Ft−1) =

M
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.Here the (positive) mixing weights αm,t are Ft−1�measurable and satisfy ∑M

m=1
αm,t = 1, φ(·)signi�es the density fun
tion of a standard normal random variable, µm,t is de�ned as

µm,t = ϕm,0 +

p
∑

i=1

ϕm,iyt−i, m = 1, . . . ,M,and ϑm = (ϕm,0, ϕm, σ2

m), where ϕm = (ϕm,1, . . . , ϕm,p) and σ2

m > 0, 
ontain the unknownparameters introdu
ed in the above equations. In the spe
ial 
ase M = 1, the model redu
es to a
onventional linear Gaussian AR model with 
onditional mean µ1,t and 
onditional varian
e σ2

1
.When M > 1, a general 
lass of mixtures of su
h models is obtained, and parti
ular members ofthis 
lass are de�ned by di�erent spe
i�
ations of the mixing weights αm,t.The Gaussian mixture autoregressive model we 
onsider extends the model proposed byGlasbey (2001) in the �rst order 
ase p = 1. We assume that the AR parameters ϕm (m =

1, ...,M) satisfy the usual stationarity 
ondition of the linear AR(p) model and de�ne the mixingweights as
αm,t =

αmnp(yt−1
;ϑm)

∑M

n=1
αnnp(yt−1

;ϑn)
,where the αm ∈ (0, 1) are unknown parameters satisfying∑M

m=1
αm = 1, yt−1

= (yt−1, . . . , yt−p),and np(· ;ϑm) signi�es the density fun
tion of the p�dimensional normal distribution with meanand 
ovarian
e matrix de�ned by the mean and 
ovarian
e matrix of the ve
tor νm,t−1 =
(νm,t−1, . . . , νm,t−p), where νm,t is an auxiliary stationary linear Gaussian AR(p) pro
ess νm,t =
ϕm,0 +

∑p

i=1
ϕm,iνm,t−i + σmεt, εt ∼ NID(0, 1) (m = 1, . . . ,M). In addition to extending themodel proposed by Glasbey (2001) we also provide a more thorough dis
ussion of its theoreti
alproperties.Our model di�ers from its previous nonlinear alternatives in several advantageous ways. Amajor theoreti
al advantage is that 
onditions for stationarity and ergodi
ity are always metand these properties are mu
h more straightforward to establish than is 
ommon in nonlinearautoregressive models. Another major advantage is that expli
it expressions of the stationary1



distributions of dimension p+ 1 or smaller are known and given by mixtures of Gaussian distri-butions with 
onstant mixing weights α1, ..., αM . Due to the known stationary distribution exa
tmaximum likelihood estimation is feasible, and one 
an assess the appli
ability of the model inadvan
e by using a nonparametri
 estimate of the stationary density. An empiri
al example withinterest rate series is used to illustrate the pra
ti
al usefulness and �exibility of the model, par-ti
ularly in allowing for level shifts and temporary 
hanges in varian
e. The paper is available athttp://blogs.helsinki.�/saikkone/�les/2014/04/GMAR-R1.pdf.Keywords: Ergodi
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