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Energy expenditure reflects the intensity of physical activity, which plays
an important role in sustaining a healthy life. Physical activity has benefi-
cial effects on cardiorespiratory fitness, lipid profiles, blood pressure, weight
control, cardiovascular diseases and diabetes (Kesaniemi et al., 2001). It is
important to note that exercise for fitness has been reported not to decrease
the total daily inactivity time (Finni et al., 2012), whereas low level activi-
ties such as standing and breaking up long periods of inactivity/sitting can
already bring health benefits (Stephens et al., 2011).

Our goal was to study the prediction of energy expenditure especially at
low-to-moderate intensity activities. In Tikkanen et al. (2014) electromyog-
raphy (EMG) data measured by smart shorts (Finni et al., 2007) was used
for the first time in the prediction of energy expenditure. Prediction results
based on linear mixed model were quite good at the individual level, espe-
cially at low intensity activities. When having unexplained variation between
individuals as in our data, an improved individual-level prediction is possible
through a calibration approach. For calibration, we need some observations
on energy expenditure from the new individual in question and EMG data.
Besides presenting the results of Tikkanen et al. (2014), our goal is to perform
a similar type of calibration as e.g. Lappi & Bailey (1988) and Mehtétalo
(2004) in forest sciences but for the energy expenditure data.

Data includes measurements from 54 volunteers. They performed a tread-
mill test with several loads each of them lasting 3 minutes: 4 km/h, 5 kmn/h,
5 km/h (-4 descent), 5 km/h (+4 ascent), 6 km/h, 7 km/h, running load
(females 10 km/h; males 12 km/) and if not exhausted, additional loads of
5 km/h (4+8) and 7 km/h (+10). For simplicity, measurements for energy
expenditure, heart rate, EMG data and accelerometer data were averaged
or summarized over the last minute of each load. FEnergy expenditure was
calculated from measured oxygen consumption and respiratory quotient. Us-
ing smart shorts with textile electrodes, we obtained EMG data consisting
of signals from four muscles, right and left quadriceps, and right and left
hamstrings. In the analysis, we used three EMG values: averages of quadri-
ceps, hamstrings, and all measurements. Acceleration value was obtained as
a sum vector from 3D accelerometer data. In our analysis, data was cat-
egorized such that 1) ”all loads” consisted of all measurements and 2) ”low



loads” consisted of walking loads up to 6 km/h.

In Tikkanen et al. (2014), the predictions of energy expenditure using
heart rate, accelerometer or EMG data with age and sex were compared.
Considering all loads, heart rate was the best predictor at the population
and individual level according to root mean squared errors. However, EMG
data based models seem to perform much better at the individual level when
compared to the population level. At low loads, acceleration was the best
predictor at the population level according to RMSEs, but the fourth at the
individual level. Especially, one of the EMG models was superior to heart
rate and acceleration at the individual level. As a summary, especially EMG
models could benefit from the individual calibration. We study the effect of
the number of new measurements on energy expenditure and EMG data, and
the effect of chosen load levels to the accuracy of prediction when compared
to the case having all measurements as in our data.
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